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A statistical theory of polymer-solvent systems has been developed on the basis of a simple lattice model
assuming wholly random packing of the linear chain molecules in the lattice. Tt is assumed that the entire
system is placed in simple tension or compression. The applications of the model are discussed in relation
to the construction of theories of polymer solutions, true and forced high elasticity, and phase
transformations in polymer systems. As distinct from existing theories, the proposed model accounts for
a number of important observable effects; the change in volume associated with the dissolving or diluting of
a polymer, negative entropies and heats of mixing, deviations from the classical theory of high-elastic
deformation, etc.

The principal difficulty in constructing a physical theory of polymers consists in the computation of the partition
function and the corresponding thermodynamic functions, especially in cases in which the polymer is subjected to
external influences. The development of statistical methods are applied to polymer systems (in particular, methods
based on the use of various lattice models) was begun by Flory and Huggins (see, for example, the review in[1]). Later,
these methods were considerably improved [2, 3]. Our object here is a generalization of the theory that will make it
possible to evaluate in explicit form the effect of the free volume of the system and especially the stresses in the
polymer material (and hence the associated anisotropy) on its equilibrium states. For the sake of simplicity we
consider only a simple variant of the theory, in which the quality of the investigated phenomena is preserved, while
detai s characteristic of individual specific polymers are neglected. The theory can be further refined with the object
of more closely approximating actual situations by discarding certain of the initial assumptions; as a rule, these
refinements are obvious. The theory can be extended to branched polymers by means of the results of [2, 3]. In what
follows neither of these two points receives special mention.

§1. MODEL AND COMPUTATION OF STATISTICAL SUM

As our model of the polymer-solvent system we employ a lattice with n = ng + ng + may, cells and coordination
number z,* occupied by ng solvent molecules, ny, polymer molecules containing m monomer units (segments) each, and
ny vacancies (holes). Thus, the volumes of the polymer segments and the solvent molecule are assumed to be the same
and equal to the cell volume, which, however, may depend on temperature and pressure.

Let the number of bonds between neighboring segments of the j-th polymer molecule oriented in the i-th
direction ("bonds of type i") be m'{"; obviously, Zm’=m—1 ,

We call a sequence of two bonds of type i, i.e., i — i, a trans isomer of type i, and a sequence i —i', i' #i a
"folded" isomer of type i, where i is an arbitrary number from the set 1, 2, ..., z.

If the number of isomers of type i in the j-th molecule of the polymer is m{’ , then S;m@ =m—2 ; if the
fraction of folded isomers of type i in this molecule is /7 (0 < i’ << 1), then Zf'm{ — fi)(m —2), where 7@ is the
fraction of folded isomers of any type in the molecule.

We assume that the trans isomers may occupy one of N torsional vibration levels with energies egx (k= 1, ...

*The coordination number z of the lattice is the total number of bonds possible between a certain element (for
example, a segment) and the elements in neighboring cells of the network; generally speaking, z = z', where z' is the
number of possible bond directions between neighboring segments of the chain molecules (number of permissible
isomers), so that a lattice with coordination number z' is, as it were, embedded in a lattice with coordination number
z (see [2]). Below, for simplicity, we assume that z = z'; the extension to the arbitrary case z = z involves the
simultaneous consideration of both lattices and does not present difficulties.
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..., N'), and the folded isomers one of N' levels with energies g;' + Ae (k =1, ..., N'), where A¢ is the energy
difference between the lower vibrational levels for the folded and trans isomers.

We assume that the entire system is located in a simple tension (or compression) field, so that a tensile force T

acts on each chain molecule; we orient the lattice so that one of its principal axes coincides with the direction of action
of 7.

We note that these assumptions are quite usual in polymer statistical physics and do not affect the qualitative
characteristics of the phenomena discussed below. Where necessary they can be discarded, the desirability of this
step being determined separately in each specific case. For example, the Flory-Huggins theory of polymer solutions
completely disregards the volume change associated with mixing. In section 3 this effect is described in terms of a
corresponding change in the number of holes, i.e., the free volume. It may be expected, however, that differences in
the length of the covalent intramolecular bonds and hydrogen or van der Waals intermolecular bonds also make a
certain contribution to this effect. If the object were to describe the effect of these differences, it would be natural to
start by discarding the constraints imposed on the volumes of the lattice elements.

After computations, we write the following relation for the number of possible states of the system:
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Here, cuih and ¢,") are the fractions of trans and folded isomers of type i in the j-th polymer molecule at the
k-th vibrational level. The first factor in (1.1) describes the number of packings of the np polymer molecules in the
lattice on the agsumption that the sequence and type of bonds are fixed in each molecule, the second factor describes
'the increase in the number of packings associated with the mixing of trans and folded isomers, while the third factor
describes the corresponding increase associated with the possibility of isomer type changes.

The fourth factor in (1.1) is the number of indistinguishable arrangements of the ng solvent molecules in ng + ng
cells and, finally, the fifth factor describes the degeneracy of the states with a given packing owing to the presence of
a large number of torsional vibration levels. When explicit expressions are substituted for Wi from (1.1) in the prod-
uct for W, the latter is somewhat simplified. The form of (1.1) is convenient, however, in the sense that it makes
it possible to distinguish in the expressions for the various thermodynamic functions terms associated with factors of
different physical origin.

The quantity W can be calculated from (1.1) as follows. We consider the progressive occupation of the lattice by
polymer molecules with a fixed bond sequence. Assume that j molecules have already been introduced into the lattice;
then the first segment of the (j + 1)-th molecule can be placed in n — jm ways. The conformation of the molecules is
assumed given; therefore, any subsequent (k + 1)-th segment of the (j + 1)-th molecule can occupy, if the position of
the initial segment is fixed, only one, perfectly definite cell. The probability @ jk that this cell is free can be
estimated as the "surface" fraction of free cells introduced by Huggins, or less accurately, but more simply, as the
"volume" fraction of such cells introduced by Flory. The corresponding expressions for 4 jk have the form:

z{n—mj —k) n—mj—k ' p
Y ey ey b ) g & o T (1.2)

A more accurate calculation, in which the nonequivalence of orientation of the (k + 1)-th segment in different
directions from the k-th segment is taken into account, can be based on the results presented in [3]. In what follows,
for simplicity, we employ the second of expressions (1.2); the quantitative difference between calculations based on
the different expressions for ajx is usually very small. As a result for the number of arrangements of the (j + 1)-th
molecule with fixed bonds we have the expression
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Multiplying the numbers w, @ for all the molecules and then multiplying the product by the Boltzmann factor
(n ‘) L which takes into account the indistinguishability of the polymer molecules, and the factor 27 Oy, which takes
1nto account the indistinguishability of the two end segments of each molecule, we arrive at expression (1.1) for W.

The number of ways of selecting 7,¥m,? folded isomers from the total number m;? of isomers of type i in the
j-th molecule is equal to the number of combinations of =, elements taken 4 m, D at a time. Obviously, the number
of selections /(m — 2) of folded isomers of arbitrary type in the j-th molecule is equal to the product of the latter
numbers with respect to i. By additionally multiplying them with respect to j, i.e., over all np molecules, we obtain
the expression W,

In order to take into account the randomness of the distribution of types of folded or trans isomers along the
polymer molecules, it is necessary to calculate the number of ways of selecting 7,%m,"? bonds of type i in the j-th
molecule entering into the composition of folded isomers of this type from the total number 7¥(m — 1) of such bonds of
arbitrary type (in the calculation it is necessary to employ the numbers m,? , and not m”, as may easily be seen by
forming a ring from the chain molecule by joining the first and last segments). If any sequences of heterogeneous
isomers are allowed, the number of such selections for the j-th molecule will be
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In reality, for example, a trans isomer i — i may be followed by folded isomers not of z, but only of z — 2 )
different types. In fact, the folded isomers i —i and i —i', i'= —i are forbidden. Therefore the expression for w3'(J)
should be multiplied by the quantity

(z—2)/ Z)!(]') (m—2)
If, moreover, we multiply the results for the different polymer molecules, we arrive at a relation for Ws.

Finally, W, and Wy are calculated in exactly the same way as W,, if one takes into account the

indistinguishability of the solvent molecules, the holes, and aiso the different isomers in the j-th molecule at the
same vibration levels.

In an isotropic system, when £, =~ /@, n W) = mn , etc., expressions (1.1) are considerably simplified. If we
neglect vibrational degrees of freedom and the presence of a solvent and also treat the polymer molecules as
cooperative systems (9 =y, etc.), then, using for the factorials the approximation z,! = «*, we arrive at Flory's
expression for the number of states [4]

W (22D n! {(m —2) nyp)!
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When torsional vibrations are taken into account, we obtain the modification of this expression proposed by
Vol'kenshtein [5].

Let us now consider the energy of a state with fixed parameters n,,fi?, m;) , etc. In calculating the
intermolecular interactions we employ the "nearest neighbor" approximations. Then the energies of the hole-segment,
hole-solvent molecule, and hole-hole interactions are identically equal to zero, and for the segment-segment, solvent
molecule-solvent molecule and segment-solvent molecule interactions we use the notations Epps Ess: and &pg,

respectively. In the Guggenheim approximation [6] for the total energy of the intermolecular interactions in the
system we obtain

By = — Ys{epp (2 —2) m + 2] np8p + e,020,S, + 265,20,5,)
[(c—2m+2]n, o,
S = oo T e S T e m e T 1.3
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Here, as the reference point for the energy E'i‘we have taken the energy of the system with "disconnected"
interactions (the completely dissociated system). It is convenient to take as the reference point the energy of the
intermolecular interactions of the crystalline polymer and the pure solvent without holes. Then

E, = (Mg epp + Yy 855 — gps) 2 Sy + Yy ziy (8ppSp + £56S) (1.4)
We note that the Huggins approximation [7]

kTy mngn kT 1 1
E'l:_Alel___::, TX:z(.z_app-}-.z_ess—sps) (1.5)

is frequently employed.

Here, X is the Huggins constant, which can be expressed in terms of the specific energies of evaporation or
cohesion of the system components, k is Boltzmann's constant, and A is Avogadro's number. Expression (1.5)
corresponds to the model of a system without holes, when it coincides with (1.4). In the presence of a large free
volume relation (1.5) becomes meaningless.

The potential energy of the polymer molecules in the field of a tensile force 7 is equal (the energy is reckoned
from the energy of a molecule extended in the direction of action of the load [5, 8]) to

7y 2

Ey =10 D) D) mi% (1 —cos8;), ©>0 (1.6)

J=1 i=1

Here 0j is the angle between the direction of the force 7 and the i-th bond; h is the effective bond length. In
investigating the effect of compression it is insufficient simply to change the sign of 7. In fact, this corresponds
merely to reflection of the system about a plane perpendicular to 7, i.e., to another possible choice of direction on
the axis of extension. Accordingly, we consider compression separately; taking as zero the energy of a molecule
oriented entirely in the indicated plane, we obtain an expression, analogous to (1.6), for the potential energy of the
system

np z

Ey=1h 2 2 mPcos®y, ©>0, ¥ = —|6] (1.7)

=1 i=1
where ¢; is the angle between the direction of the i-th bond and the plane.

The torsional vibration energy
Np 2z N’ ] . N . . .
By= D\ <2 1 mP (e + &) + X ol (1 — 77) mﬁ”ek) (1.8)
j=1 i=1 ‘k=1 L=1

If we neglect vibrational degrees of freedom, i.e., assume that all the isomers are at the lower levels, so that
cii = C;'_I =1, cjk = c{k =0, k #1, expression (1.8) reduces to the relation proposed by Flory for describing molecular
chains with limited flexibility,

"p
By =D " {m—2)Ae (1.9)
=1
In the general case we will henceforth assume that
&= (k—1) fo, & = (k —1) ho', i = h/2n

Here, h is Planck's constant, and w and ' are the frequencies of the lower harmonics of the torsional
vibrations of the trans and folded isomers, respectively.*

*For simplicity, only two ’types of isomers are distinguished—folded and trans isomers. In principle, it is"

possible to distinguish z — 2 different types of folded isomers; then, instead of Ag, w' a set of z — 2 such quantities
will figure in the theory.
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Finally, the energy of the system in an isotropic pressure field P is represented in the form (the energy of the
analogous system without holes is taken as the reference point)

E, = Pnoy (1.10)
where v = v(P, T) is the volume of a lattice cell.
The partition function of the system has the form**

E (1.11)

Mua

0= 3 Wino, f.. Jexp(— g Eno i), E=

W21 13

1
LA

Here, the summation is carried over all possible values of the parameters no,féi) etc. (apart from P, np, and
ng, which are assumed given), compatible with the condition W' = 1, where W' = W/W; is the number of possibleways
of packing the system in the lattice.

We assume that each chain molecule and the system as a whole is a cooperative system, so that the sum (1.11)
can be replaced by its maximum term with ny= nomax,ff & f; = fimax, etc. Then, omitting the subscript max, for Q
we have the approximate expression

— E(no, fi, .. .) w . 1 (1.12)
Q=W (no, fiy. . Joxp(— =gl ) W (o, iy ) > :

The replacement of the sum (1.11) by relation (1.12) is possible in view of the very sharp dependence of the term
under the summation sign on the parameters involved and its very sharp maximum at a certain point of parameter
space, which is generally characteristic of all systems to which the methods of statistical physics are fundamentally
applicable. In the limit, as the number of elements of the system tends to infinity, the legitimacy of substituting (1.12)

for (1.11) is easily demonstrated; in particular, the substitution is justified, for example, in [2], and also in [9], for
systems of the type considered here.

Expression (1.12) for @ is valid only at W' = 1. It is easy to see that W' is a decreasing function of temperature,
so that at a sufficiently low temperature this condition is not satisfied, and expression (1.12) leads to paradoxes, for
example, the entropy of the system proves to be negative. In order to formulate the partition function in the low-
temperature region, we employ, as most reasonable, the hypothesis of Gibbs and Di Marzio [2,9], according to which
the temperature Tg, at which W' & 1, is regarded as the temperature of a certain second-order phase transition
(according to the Ehrenfest classification) identifiable with the glass transition associated with infinitely slow
(equilibrium) cooling of the amorphous polymer. At T < Tg the configuration of the system is, as it were, "frozen in":
the values of all the parameters are assumed constant and equal to their values at T = Tg. Thus, at T < Tg the
partition function is represented in the same form (1.12), but ng, fj, etc. are calculated at the temperature T = Tg.

§2. THERMODYNAMIC FUNCTIONS

Using the Stirling formula, for the entropy of the system, after computations, we obtain the expression

S =FknW = 8; -+ S+ 8;+ 8 + S
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*#t is assumed that the internal state of the segments and solvent molecules does not depend either on the method
of packing in the lattice or on the development of torsional vibrations. Then the internal partition functions are
excluded from consideration.
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Here, the terms Sj describe the contributions to the entropy due to the factors Wj in expression (1.1) for the
number of states of the system; Ips Tss and ry are numbers of moles, and Ppr Ps and ¢ the volume fractions of
polymer, solvent, and holes in the system. For simplicity, in what follows we assume that mj > 1; moreover, we set
N = N’ = o0,

+

7
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Then for the entropy S and the Gibbs function & of the system we have the asymptotic expressions
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Here, X{=1— cos for tension and X; = cos #j for compression. From (2.2) it is easy to obtain expressions
for all the other thermodynamic potentials, the partial potentials of the components, the coefficients of thermal
expansion, the compressibility, specific,heat, etc.

The equilibrium values of the parameters cjj, c'ij, fi,» mj and n; yield an extremum of the potential .
Considering & as a function of these parameters and the quantity y from (2.2) and taking into account the constraints
(definition of y in terms of fimj, conditions of normalization of Cij» c}j, firand mj), we obtain equations for the
unknown parameters. As a result, for cij we obtain

€;; = exp ?(—';1—”—@ (1 — exp _k—,};,m)_l (2.3)

The expression for c'ij differs from (2.3) only in the substitution of w' for w. The equation for ngy (rg) has the

form

In
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Here, vp may be regarded as a characteristic of the concentration of the system [7].
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When vy < 1 Eq. (2.4) is easily solved, if it is assumed that G = Gy = Glv = 0. We have

vo e (1 — Otz B0 {2.5)

This formula gives a reasonable approximation at sufficiently large values of the x parameters in (2.4). In the
same way, it is easy to investigate (2.4) on the assumption that vy > 1, which corresponds to very high system
temperatures.

z=0
v
T\ N

10 }\\\

5 \‘1

zo\\-\q:—_-ﬁ

4 Iy 4
Fig. 1

It is easy to see that vy decreases with increase in the dimensionless parameters xpp, Xgg, ahd Xp and with
decrease in the parameter Ax (i.e., the free volume increases with increase in temperature, weakening of the
intermolecular interactions, deterioration of solvent quality, and decrease in pressure). The dependence of vy on xp in
the region where the error of formula (2.5) may be large is given in Fig. 1 for various values of x = Xpp {figures
adjacent to the curves). We have considered only a block polymer, when z = 4. The effect of the concentration vp on vg
is more complicated. The relations between g = ~lnyg ~ xp and vp at various xpy and xgg are present in Fig. 2. Here,
it has been assumed that Ax = 0; the solid curves in Fig. 2 correspond to the value xpp = 4 and the values of xgg
indicated by the figures adjacent to the curves; the dashed curves have been plotted for xgg = 4, the figures adjacent to
the curves indicating the corresponding values of Xpp- Clearly, adding to the polymer a solvent of the same or lesser
polarity causes an increase in free volume, while adding a solvent of much greater polarity leads to a decrease in free
volume. The increase in the free volume of a mixture of a polymer and a solvent of the same polarity as the polymer
content of the mixture decreases is obviously attributable to the fact that separation of the polymer segments is
seriously impeded by the presence of intramolecular bonds between the segments of the same molecule.

Fig. 2

For the quantities fj, mj, and y we have the equations

z
. -3 J.
lni_fzfi_lnzz +lnw 4061~ =0, }“i:'%v Exmizm
filnfi+(1—7f)In(A—f) + filn s~ f; In ((z —2) / 2) 4~ f1 (61—2) + o = &,
dm=1, 61=B—{¥ln(1——exp —M%)), 62=1n<l—exp_——£,2)
i1 '
4= th /KT, B=Ae/kT (2.6)

where A is a certain constant (Lagrange multiplier). Combining, from (2.6) we obtain the expressions
(I—f)eMi=er=A, py=(1—Ff)(z—2)(fiz)leous (2.7)

After the quantity A has been determined from the condition Zjuj = 1, the parameters-m; can be found from the
relations
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which coincides with the expression for f obtained in [5].

We note that within the framework of the model considered the parameters fj and m;j do not depend on the free
volume of the system, and when w = w' they do not depend on the degree of development of the torsional vibrations
either. Similarly, the population of the various vibrational levels and the free volume of the system do not depend on
the mechanical stresses in the polymer.

10 ~ ;

>
\nj —
) )< .

-1 g !
Fig. 3

The dependence of the parameters fj and m;j* on o at 8 = 0 (dashed lines) and 8 = 1 (solid lines) is presented in
Figs. 3 and 4. In the calculations it was assumed that z = 4, the directions i =1 and i = —1 being oriented along the
line of action of the force, and the directions i =2 and i = —2 at right angles to it. The values of i are indicated by the
figures adjacent to the curves in Figs. 3 and 4, where positive values of a correspond to tension and negative values to
compression. Obviously, in tension and compression the directions 2 and —2 are equivalent; in compression the
directions 1 and —1 are also equivalent (the f, and f_, curves and also the m* and m-_/* curves merge in the region of
negative @). It can be seen from Figs. 8 and 4 that the extension or compression of an amorphous polymer is
controlled by two simultaneous processes: firstly, by a redistribution of free isomers along the molecular chains with
preservation of their total number; secondly, by a change in the relationship between folded and trans isomers, which
proceeds differently in different directions, but is accompanied by a decrease in the total number of folded isomers
and theappearanceof a preferred bond orientation. These processes are considerably facilitated by an increase in the
stiffness of the polymer molecules. The first process is accompanied by a change in the entropy of the system at
constant energy, the second by a change in both entropy and energy. These conclusions are consistent with the results
of the rotational isomerism theory of extension of individual molecular chains [10,11] and also with the experiments
described in [5]. We note that the efficiency of both these processes is independent of the quantities characterizing the
intermolecular interactions, in particular, the solvent content of the system. This is easy to understand if it is kept
in mind that all that has been said relates to equilibrium states attained after very prolonged application of the stress,
but not to the rate at which these states are attained, which, of course, may depend on »p and the intermolecular
interaction energies.

We also consider the equilibrium states at @ << 1, when it is possible to assume that the parameters
characterizing these states differ by small amounts (indicated by a prime) from their equilibrium values in the
isotropic system, i.e.,

fi = fio + fi’y By == Mo + p‘i’r mi* = my* + mi*’v A=Ay + A

Using obvious expressions for the quantities in the isotropic state and the lattice geometry selected in
constructing Figs. 3 and 4, from (2.7) and (2.8) we obtain
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Hence it is easy to see that the total number of folded isomers at small @ is equal, correct to terms of the
second order in &, to the number of folded isomers in the isotropic state; i.e., in the presence of relatively small
forces only the first of the processes enumerated above is important and the resistance is purely an entropy effect. It
is also clear from (2.9) that fi' and m;* decrease with increase in temperature as follows from the "gas" theory of
extension of chain molecules [5].

T~ s
2 \\\\ /4
= -
~ N
/L/-’/ N N \\\\‘
iy -1 o
-1 a o 1
Fig. 4

The above formulas characterize the thermodynamics of the equilibrium states of the system at T = Tg, At T <
< Tg the previous expressions for the thermodynamic potentials are retained; however, the parameters cij, Cij, fis
mj, and ng are calculated at the temperature T = Tg (see [9]).

33. SOME APPLICATIONS

The proposed model differs importantly from existing models in two respects: first, in the simultaneous
introduction of cells occupied by solvent molecules and vacant cells; second, in the explicit allowance for the effect of
the external load on the structure of the equilibrium states of the polymer system. In order to illustrate the
possibilities of this model (and other conceivable models of the same type) in accounting for a number of
experimentally observed effects not yet explained by existing statistical theories, it is applied below to a series of
particular problems of amorphous polymer physics: to the theory of solutions, to high-elastic deformation, and to
phase transformations in polymer systems. In fact, all these problems represent broad independent regions of
research, each of which has been the subject of a very large number of both theoretical and experimental studies.
Therefore, we concentrate only on the qualitative aspects of certain selected phenomena that owe their origin to the
presence of a free volume (holes) or an external load.

The shortcomings of the present theory of polymer solutions are discussed, for example, in [12]. The most
serious of these shortcomings is the fact that in these theories volume changes are neglected. Other phenomena that
contradiet the Flory-Huggins theory [1] include: 1) the change in the interaction parameter y (see Eq. (1.5)) with the
concentration of the solution, this change being the more considerable the greater the difference between the
polarities of the polymer and the solvent; 2) the negative entropies and heats of mixing observed when a polymer is
dissolved or diluted in solvents of essentially different polarity; 3) the phase separation (thermodynamic instability) of
polymer-solvent systems not only at low but also at high temperatures (the so-called "lower critical mixing
temperature”). It is easy to see that the proposed model makes it possible to account for all these effects.

In fact, let us consider a stable polymer solution in an isotropic situation. On the basis of the results of section
2 its entropy and Gibbs function can be represented in the form

Se=—R(rsIn@; 4 ro 10 Qo+ rp In @) — Rrym [1—f1n(z—2)+f}nf—{—
HA=N =1+ f D o ey (1 —7) N ejln o]
D=7+ {zrseSp + Yy 270 (EppSp - £565%) -+
+ Porotrpm [1 3 o (A2 +29) + (1— 1) X s8]} 4 (3.1)

The entropy of rp moles of polymer in the amorphous state and rg moles of pure solvent S° is equal to
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In the same way, it is easy to write expressions for the potential ° for pure polymer and solvent.
The expressions for the thermodynamic mixing parameters are easily obtained from (3.1) and (3.2):
AV = R(ry — 1™ — ™), A® = AE — TAS
q)(S) q)(10)
AS=Riryin = 4 r,ln 22 £ ngl) L rPingl —ryln q>0>
Ps Pp
AE = AfareSpy + Yoz [epp (reSp — i SPY) + ey (roSs — r§ISEN]y + PAV,
SO = Ts
* rs + r(()s)
5P = [(G—=2m+2lrp . (z—2mr (3.3)

[(z—2)m+2]rp+ zr(()p) (z—2)mry + zr((,p)

In AS from (3.3) it is possible to omit the term with ¢ r,, In(p,®Y ¢,) in view of the fact that m > 1; for simplicity it
has been assumed that the excitation of torsional vibrations in the amorphous polymer does not depend on the amount
of solvent. From (3.3) it is clear that in the presence of sharply different polarities of the components (i. e.,
essentially different Xpp and xgg) the mixing entropy AS may well be negative. Moreover, an analysis shows that
negative AS are possible even when the polarities of the polymer and the solvent are quite similar. Negative AS make
a positive contribution to the quantity A® which is greater in proportion to the temperature. Therefore at large T the
quantity A® may become positive, even if AE < 0; this corresponds to disturbance of the thermodynamic stability of
the solution. Under certain conditions the heat of mixing also becomes negative. As it is easy to show, using relation
(2.4) and the first of equations (3.3), the change of volume AV is always negative, i.e., mixing is accompanied by
compression, which is perfectly consistent with the experimental data of [12].

> ‘ /\

Fig. 5

For the purposes of a quantitative analysis we have everywhere assumed that z = 4, xp = 0, while using model
solutions of three types.

1. Solution of a polymer in its own monomer. In this case xpp = xgs, Ax = 0. The 6V = 6V(Vp) curves are
presented in Fig. 5, the figures adjacent to the curves denoting the dimensionless temperature n:

2

Top ., = AV (3.4)
kT v (mrp 4+ rg)

T
n=__,
1o

Clearly, 0V is always negative and has a minimum as a function of v corresponding approximately to half-
concentrations. As n increases, the absolute value of 6V rises very sharply; for example, at n = 0.25 the maximum of
|6V] is approximately 30 times greater than at n = 0.75. At sufficiently high temperatures the volume change reaches
several percent. All this is in good agreement with experiment (see [7,12]). We note that in these calculations the
quantities v, Vo(p) and VO(S)‘were computed in the approximation (2.5).

2. Solution of a polar polymer in a nonpolar solvent. In this case, to be specific, we have assumed that



'yxpp(To) = xgs{T) = 1, ¥ = 0.1 and have employed the approximations that follow from (2.5} when vp # 0
.VO(S) S>> vy ~ Vo(17) ~ 0, VO(S) ~ (el/ﬂ —
The dependence of the reduced functions on vp and n was calculated on a computer:
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3. Solution of a nonpolar polymer in a polar solvent. In this case, as before, it has been assumed that

Zpp{To) = yr (T =1, 7=01, VolP)3> vy ~ vl and v m (VR ), v kg

The reduced functions have the form
88 = — (1 — vplIn{t — vp) + vpve® In (v P/ (1 + v, )
8E = vpl— vo® A dx(l — vp) (2~ vp)H, %= Az / app (3.6)
6@ = 8E — nbS

The dependence of the reduced entropy 6S for solutions of the second (solid curves) and third (dashed curves)
types is presented in Fig. 6. It has been assumed that » = 0 and the figures adjacent to the curves indicate values of n
from (3.4). It is clear that there are regions of negative 6S at low concentrations (for solutions of the second type) and
large vy (for solutions of the third type), these regions broadening considerably with increase in the temperature n.
The analogous dependence of 6& on u, is presented in Fig. 7 (same notation). The regions of positive & are somewhat
narrower than the regions of negative 6S in view of the negativeness of 6E. We note that the nature of these curves for
a solution of the second type is, as it were, opposite to that of the curves for a solution of the third type. Phase
diagrams of solutions of the second and third types, constructed on the basis of the calculations described, are shown
in Fig. 8, where the regions of thermodynamic instability have been shaded. The region of instability adjacent to the
straight line vp = 0 relates to the solution of the second type, and the region adjacent to the straight line vp = 1 relates to
the solution of the third type. Despite the extreme simplicity of the lattice employed and the approximateness of the
calculations, the shape of these regions is surprisingly close to the shape of the regions of instability observed
experimentally at high temperatures [13]; the results of calculations are also in reasonable agreement with numerous
experiments performed on very different systems (see, for example, the review in [14]). A simple analysis of
relations (3.3) also shows that, in accordance with experiment, an increase in the order of the dissolved or diluted
polymer [14] and, equally, an increase in the hydrostatic pressure in the system [15] tend to shift the curves in Fig. 8
in the direction of higher temperatures. From an analysis of relations (2.1) it follows that for the solutions considered
the above-mentioned effects, "anomalous" from the standpoint of the Flory-Huggins theory, are intensified as the
molecular weight of the polymer increases, which is also consistent with the experimental data [13~15].

Fig. 6

It is easy to see that the principal reason forthe deterioration of solubility with increase in temperature and the
appearance of a lower critical mixing temperature is the fact that in this temperature region the coefficients of
thermal expansion (determined by the change of free volume) of the polymer and the solvent are essentially different.
In a number of cases the temperature of the solution may even be higher than the boiling point of the pure solvent [13].
The relatively expanded state of the solvent at high temperatures causes a negative contribution to 63 (and also 6V)
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when it is used fo dilute a relatively compact polymer and vice versa, in accordance with the view expressed in [16].
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These results show that at high temperatures phase separation may be observed even in very dilute solutions of
a polar polymer in a nonpolar solvent and in nonpolar polymers containing small amounts of polar solvent.
Experimental confirmation for dilute solutions at ordinary (room) temperature is reported in [17]. It may be that
precisely this type of separation occurs in certain aqueous drag-reducing polymer solutions, causing "aging" of the
polymer solution with the formation of a heterogeneous system of aggregations of more concentrated solution in almost
pure solvent [18]. On the other hand, the appearance of an upper critical mixing point and a region of thermodynamic
instability at low temperatures is caused not by entropy, but principally by energy factors. The change in the
dependence of 6& on vp for solutions of the second and third types (solid and dashed lines, respectively) with
deterioration of the quality of the solvent (i. e., with increase in the parameter ® in (3.5), (3.6)) is illustrated in Fig. 9.
Clearly, at sufficiently low temperatures when ® > 0 regions of thermodynamic instability of the usual type appear.
As the temperature increases, the effect of "nonathermicity" (nonzero ®) monotonically decreases.
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Fig. 8

We also consider the change of the interaction parameter X with the concentration of the solutions. Equating
relations (1.4) and (1.5), for the effective value of x in the case whenn = 0, i.e.,wX = 0 according to the Flory-.
Huggins theory, we have the expression

S 1

= :%70 ~ =y “epSp T 7Sl Vo= %o (vp) (3.7

The results of calculating the parameter X' for solutions of the second (solid lines) and third (dashed lines)
types at various temperatures n (figures adjacent to the curves) are presented in Fig. 10. The results are also
consistent with experiment; for example, a rapid increase in x with increase in the concentration of polar solvent has
been observed in the case of solutions of polyisobutylene in pentane [13], polypropylene in ketones [14], etc.
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Fig. 9

Thus, the proposed model makes it possible to offer a perfectly natural explanationfor allthe principal
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deviations of the behavior of actual polymer solutions from that predicted by classical Flory-Huggins statistics merely
from an analysis of the free volume of the system, without introducing any more refined ideas about the difference in
the lengths of the intra- and intermolecular bonds, ete. These effects can be allowed for independently by means of the
compressible cell and averaged potential methods proposed by Prigogine [19]. We note that attempts to apply these
methods in the theory of polymer solutions have already been made, for example, in [12,16].
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Fig. 10

We now consider the qualitative laws of polymer deformation. For simplicity, we confine ourselves to the case
of extension of a block polymer (without solvent), neglecting the presence of holes and employing the same lattice
geometry as in constructing Figs. 3 and 4. Clearly, if the tensile load 7 increases relatively slowly, and the
characteristic time of this process is much greater than the relaxation times of the system, the polymer will pass
successively through a set of equilibrium states corresponding to increasing values of 7, so that the process of
deformation is also an equilibrium process. Obviously, this behavior is typical at high temperatures, and in this case
the structural characteristics of the states of the system (the fractions m;* of bonds oriented in different directions,
the statistical weights of the folded isomers fj, ete.) can be calculated by the method proposed in §2. In order to
obtain the dependence of the relative elongation A on the load 7 it is merely necessary to be able to relate A with the
values of the above-mentioned structural characteristics. In principle, this can be done using the general methods of
configurational statistics of polymer molecules described in [5]. Here, for the purposes of a qualitative estimate, we
employ a simple approximate determination of A assuming an approximately Gaussian distribution of the isomers along
the molecular chains. We then have

M) = LOHL() — L), L) = h(V 2, — Bz, + Az)
L) = bV 5, Z, = my(®) + m_y(3), Az, = my(t) — m_y() (3.8)

Introducing the coefficient ¢ {7) and @y 7), which can easily be computed from the expressions given in §2 we
write

Az, = gi(Om, 2, — Az = (1), MO =) Vin + 4 = e Vm (m>1),

0@ = o®)/ V@ul0), %) = (1) / 9:(0) (3.9)

It follows from (3.9) that for equilibrium deformation the shape of the A(7) curves is similar to the shape of the
@(T) curves. The equilibrium A(7) curves at three temperatures Ty > T; > T, are shown qualitatively in Fig. 11
(curves 0,1, 2, respectively). Clearly, the theory based on the proposed model differs from the "gas" theory of high
elasticity of amorphous polymers [5,20] in three basic respects: the inclusion of energy changes during deformation
resulting from the change in the total number of folded isomers (this effect was previously investigated in [10, 11] for
isolated chains), allowance for deviations from Gaussian distribution as the polymer molecules approach the state of
maximum extension, and, moreover, allowance for cooperative effects in a lattice occupied by constrained polymer
molecules, which, as it is easy to see, play a very considerable role in the development of large deformations. These
distinctions are responsible for the deviation of the high-elastic strain curves in the direction of smaller A as
compared with the curves corresponding to the classical theory (a detailed physical discussion of the possible reasons
for this deviation may be found in [5]). For example, in Fig. 11 the curve 1', describing the deformation of a polymer
at a certain m' < m at temperature T, is compared with a typical curve following from the gas theory (dashed line).

In reality, the high-elastic strains of actual polymers are usually essentially nonequilibrium, equilibrium being
attained only in the limit, when the load T varies slowly, or at very high temperatures (see, for example, [21]).
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There have been numerous attempts to take this nonequilibrium effect into account, both phenomenological, within the
framework of the theory of viscoelasticity, based on the introduction of a relaxation spectrum, and physical,
associated with the construction of special models. An example is the work of Ciferri and Hermans [22], in which the
nonequilibrium effects are described by introducing certain "labile" nodes in the molecular network (entanglements,
etc.). Here, we examine a simple model, in which the presence of intermolecular interactions in the system is
responsible for the formation of labile nodes.

Fig. 11

In accordance with Eyring's theory of absolute reaction rates [23], the probability of the fluctuational
displacement of a segment of a polymer molecule acted upon by a force 7 can be represented in the form

g(v) ~e7% a = [(z — 2)¢' —1ll (kT)L, &' ~ gpp,
I~k (3.10)

Here, (z — 2)e' — 71 is the effective potential barrier that must be overcome to permit the displacement in
question. The mean dimension of the portion of a molecular chain, expressed as the number of segments i, that can
relatively rapidly change its configuration in a force field, is estimated as follows:

el
~ W = €
p~l§owm =i (3.11)

The dependence of 4 and 7 at various temperatures is represented qualitatively in Fig. 12a. As 7 —~ 7, = (z —
- 2)8,'l_1 these curves go to infinity. However, if g is bounded above by the size of the molecules (or the spacing
between crosslinks) m, the true p(7) curves approach the straight line g = m (dashed lines in Fig. 12a). For example,
at the temperature T let u(0) = m' (curve 1'in Fig. 11). As 7 increases, the size of the autonomous chains u(7)
increases in accordance with the curves in Fig. 12a, and the A(7) curve deviates from curve 1' in the direction of
curve 1 in Fig. 11 corresponding to 4 = m, acquiring a characteristic S shape. At 7 ~ 7, the deformation curve T;
and curve 1 almost merge (we note that if m represents the length of the molecules in a polymer without crosslinks, at
high values of 7 plastic irreversible deformation or viscous flow, which, of course, is not described by the curves in
Fig. 11, may be observed). It is easy to see that curve 1 in Fig. 11 is similar in shape to the experimental curves [5].

Fig. 12

Let us consider the deformation of the same polymer at other temperatures. At T; < T let the polymer be in
the glassy state, so that at small 7 the deformation is basically determined only by the change in the lengths of the
intra- and intermolecular bonds, while the mobility of the units of the molecular chain is limited and u from (3.11) is
also very small. As 7 increases in the region 7 ~ 7, the quantity x4 from (3.11) should increase sharply, causing an
equally sharp increase in the deformation A(7) (see the curve marked T, in Fig. 11). Obviously, this corresponds to
the forced elastic deformation of the glassy polymer at high stresses.

The model proposed also makes it possible to explain the phenomenon of thermoelastic inversion associated with
the stretching of a polymer [5]. As an example, suppose that at the temperature T; > Ty a polymer is stretched under
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almost equilibrium conditions, i.e., in accordance with curve 0 in Fig. 11. Itiseasytoseethatwhena <A;andrt <7q
raising the temperature from T, to T causes a decrease in the stress 7 at A = const or an increase in A at 7 = const.
In the region A > Ay, T > 74 the opposite is true.

The curves in Figs. 11 and 12a make it possible to construct the thermomechanical curves of the polymer—the
dependence of A on T at constant 7. An example of such a curve is presented in Fig. 12b; its shape is similar to the
shape of the corresponding experimental curves [7]. At large T viscous flow may develop in a noncrosslinked polymer

(solid line) or (in the case of a crosslinked polymer) there may be a certain decrease in A with further increase in
temperature (dashed line in Fig. 12b).

We note that in the deformation of amorphous polymers a certain role is also played by effects associated with
the competition between individual molecules in the process of spatial orientation, which make an additional
contribution to the total entropy of the system. These effects were examined in [24]; we note that they can easily be
taken into account within the framework of the propesed model.

Let us briefly discuss the effect of the parameters of the system and the external load on phase transformation
in amorphous polymers. The theory of equilibrium crystallization and melting of polymers was developed by Flory [4];
taking the torsional vibrations into account made it possible to obtain results very similar to those observed
experimentally for polyethylene [5]. Certain important new factors, not described in [4, 5], are taken into account in
the proposed theory: these are the presence of a free volume in polymer solutions and the change in the structure of
the equilibrium states in the direction of an intensification of orientation in the presence of an external load. An
analysis shows that the presence of a free volume somewhat facilitates the random packing of the polymer molecules
and reduces the melting point or crystallization point in equilibrium processes. On the other hand, the preferred
orientation of the molecules during deformation (especially in tension and to a lesser extent in compression) reduces
the number of permissible random packings and increases the Gibbs function of the system, thereby raising the phase-

transition temperature. This is confirmed by the experimental data on the forced crystallization of stretched rubbery
materials and is consistent with the accepted view [5].
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There is as yet no unanimity concerning the nature of the glass-transition effect and the corresponding
temperature Ty, apparently because of the ambiguity of the various methods of determining Tg and the effect on them
of the kinetic characteristics of the processes used in different experiments. Thus, for example, some authors deny
that glass transition is essentially a second-order phase transformation (for example, [5,25]), whereas others
ascribe to it the properties of a phase transition of not only second, but first order [26]. Here, by the temperature T
we understand the temperature of an Ehrenfest second-order phase transition in accordance with the glass-transition
theory of Gibbs and Di Marzio [9], as mentioned at the end of §1. We note that most of the arguments of the partisans
of a purely kinetic approach to the glass—transition problem enumerated, for example, in [5], confirm rather than
refute the point of view expressed in [9]; in particular, the basic argument concerning the dependence of the glass-
transition temperature, determined experimentally, on the rate at which the experiments are carried out is directly
related with the hypothesis of [9] and, in fact, follows from it. Moreover, the true phase transition may be masked in
the experiments not only by the influence of kinetic factors but also, for example, as a result of the degeneracy of

the torsional vibrations, which persists even in the glassy state as the temperature is further reduced, as noted by
Ueberreiter [25].

The relations given in §§1 and 2 make it possible to estimate the effect on T, of a variety of factors. Here we
consider only two particularly significant examples. We first investigate the dependence of Tg on the concentration »
of an isotropic solution of a polymer in its own monomer (solution of the first type). Neglecting, for simplicity, the
free volume and taking z = 4, after simple computations we obtain the estimate
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The functions ¥jare presented in Fig. 13; when Ae > 0 we have f < 2/3, so that in the region f > 2/3 the curve
¥y(f) is meaningless (dashed line in Fig. 13). According to [9] glass transition occurs at 8' = 0, i.e., \Ifi(vp) ~ \Ilz(fg),

where fg= fg( Vp) is the root of the latter equation. The quantity fg(vp) is easily determined from Fig. 13; from the
expression for f in §2 there then follows

k a1

_A%: = I 1(2_ . 1%{:&)) (3.12)
which finally gives the temperature Tg. The dependence of Tg (3.12) on vp is presented in Fig. 14. Clearly, in
accordance with experiments on polymers that swell in good solvents [17], at sufficiently large vp the temperature T
depends almost linearly on v,,. In the presence of swelling in poor solvents, starting from a certain vp, the
thermodynamic stability of the system is disturbed and separation takes place, so that the plasticizer introduced
begins to play the part of an interstructural lubricant {17]. In this case the fall of Tg ceases, which is conventionally
represented in Fig. 14 by the dashed line AB, a jump B — C being possible when thermodynamic stability is attained
in the region of comparatively small Vp- We note that the temperature T, thus determined relates to the stable phase
in the heterogeneous system obtained; for this system as a whole a formula of the (3.12) type is incorrect, and an

interstructural lubricant may cause a fall in the effective glass-transition temperature even in the region of constancy
of Tg for homogeneous structures A—B.
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As a second example we will consider the dependence of the glass-transition temperature Tg', determined from

the beginning of forced elasticity of the glassy polymer, on the tensile load 7. According to (3.11), at sufficiently low
temperatures forced elasticity begins at

(z—2) — vl ~ kTS, 1. e. Ty’ = C — C,7, C; = const
which corresponds exactly to the empirical equations for various polymers established in [27].
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